If this works on console, Bizhawk is terrifyingly accurate.
Done in Bizhawk 2.8, SubNesHawk core.
So, TLoZ has the entire game loop inside an interrupt, with the exception of spinning. Of course, the Non Maskable Interrupt is disabled for this entire duration until the moment before spinning. However, there is a very brief 5 CPU cycle window where the NMI can happen before the RTI, so if timed correctly you can nest an interrupt inside the interrupt. This requires subframe button mashing for a ridiculous amount of time even just to line it up for a single nested interrupt, but should you nest too many, the stack overflows! We can then resolve 84 RTIs in a row, eventually pulling off some "garbage" as a return address. This leads to a BRK, which leads to a BRK, which leads to a BRK... and the infinite loop might as well be a game crash, since the NMI isn't going to run anymore.
You could probably make this happen somewhere other than the title screen to begin executing code somewhere else, but it needs more experimenting.
This was achieved through a crummy LUA script that just kept adding a new input, stalling for 7 frames, and seeing if another NMI happened before the RTI. It could probably be improved, since I was specifically checking for an exact address being pushed to the stack, when there are actually 2 different addresses that could be pushed between enabling the NMI and executing the RTI.
Hilariously, since the entire code is inside the NMI, when I need to perfectly time the NMI to happen before the RTI, the entire frame happens, so the game continues to play slowly whenever I can nest another NMI.